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2   THE STRUCTURE OF ATOMS

The remarkable advancement of science in the first half of the 20th century was characterized
by parallel developments in theory and experiment. It is indeed exciting to follow that scientific
advancement because we are able to see clearly several jumps in this development. Indeed the
progression from the discovery of the electron, to the quantum theory of Planck, to the discovery of
the atomic nucleus by Rutherford, to the Bohr theory, to the introduction of the quantum-mechanical
theory stimulated intellectual excitement.

In chemistry, the establishment of the general ideas of orbitals and electron configurations has
had particular significance. These ideas may be judged to be both the modernization and the
completion of atomic theory.

2.1 Discovery of electrons

According to Dalton and scientists before him, the atom is the indivisible, ultimate microscopic
component that constitutes matter. Thus, no scientist prior to the beginning of the 19th century
considered that an atom might have a structure, in other words, that an atom is also constituted by
smaller components.

The belief in the indivisibility of the atom began to waver because of the development of a
deeper understanding of the relation between matter and electricity, not because scientists had
become suspicious of its indivisibility. You can study the chronological progress in the
understanding of the relation between matter and electricity.

Table 2.1 Progress of understanding the relation between matter and electricity

year events
1800 discovery of the electric pile (Volta)
1807 isolation of Na and Ca by electrolysis (Davy)
1833 discovery of the law of electrolysis (Faraday)
1859 discovery of cathode rays (Plücker)
1874 naming the electron (Stoney)
1887 theory of ionization (Arrhenius)
1895 discovery of X rays (Röntgen)
1897 proof of the existence of the electron (Thomson)
1899 determination of e/m (Thomson)
1909-13 oil drop experiment (Millikan)

Faraday contributed significantly. He discovered that the amount of substance produced at the
poles during electrolysis (the chemical change when electric current is passed through a solution of
electrolytes) was proportional to the amount of electric current. He also found in 1833 that the
amount of electricity required to produce 1 mole of substance at the electric poles is constant
(96,500 C). These relations were summarized as Faraday’s law of electrolysis.

Faraday himself had no intention to combine his law with the atomic theory. However, the Irish
chemist George Johnstone Stoney (1826-1911) had the insight to notice the significance of
Faraday’s law for the structure of matter; he concluded that a fundamental unit of electricity exists,
in other words, an atom of electricity. He dared to give the name electron to that hypothetical unit.

Then another interesting finding emerged due to vacuum discharge experiments. When cations
hit the anode upon application of high voltage at low pressure (lower than 10-2 - 10-4 Torra)), the gas
in the tube, although it was an insulator, became conductive and emitted light. When the vacuum

                                                  
a) Torr is a unit of the pressure that is often used to describe the degree of vacuum. 1 Torr = 133.3224
Pa)
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was increased, the wall began to glitter, emitting fluorescent light (Fig. 2.1). The German physicist
Julius Plücker (1801-1868) took interest in this phenomenon and interpreted it as follows: some
particles are being emitted from the cathode. He gave the name cathode ray to these unidentified
particles (1859).

Fig. 2.1 Discovery of the cathode ray
The cathode ray generated in a vacuum tube when a high vacuum

was applied provided very significant information on the structure of the atom.

This unidentified particle would, after being emitted from the cathode, fly straight toward the
wall of the tube or to the anode. It was found that the particle was charged since its course of flight
was curved when a magnetic field was applied. Furthermore, the properties of the ray did not depend
on the type of metal used in the cathode tube, nor on the type of gas in the discharge tube. These
facts suggested the possibility that the particle could be a fundamental constituent of matter.

The British physicist Joseph John Thomson (1856-1940) showed that the particle possessed
negative charge. He further sought to determine the mass and the charge of the particle by estimating
the effect of electric and magnetic fields on the motion of the particle. He obtained the ratio of the
mass to the charge. To obtain their absolute values, one of the two had to be determined.

The American physicist Robert Andrew Millikan (1868-1953) successfully proved by an
ingenious experiment the particulate nature of electricity. The experiment is called Millikan’s oil
drop experiment. Droplets of oil atomized in a chamber fall under the influence of gravity. If the oil
droplet has an electric charge, its motion may be controlled by countering gravity with an electric
attraction applied by an electric field. The combined motion can be analyzed by classical physics.
Millikan demonstrated by these experiments that the charge of an oil drop is always an integral
multiple of 1.6 x 10-19 C. This fact led to a neat explanation by attributing the charge of 1.6 x 10-19 C
to the electron.

The charge/mass ratio of the charged particle so far known was ca. 1/1000 (C/g). The ratio
Thomson obtained was much larger than that (the accurate value now accepted is as large as 1.76 x
108 C/g), and that finding was not in the framework of the knowledge at that time. The particle
should not be a kind of ion or molecule, but should be regarded as a part or fragment of an atom.

Sample Exercise 2.1 Calculation of the mass of an electron.
Calculate the mass of an electron using the experimental values obtained by Millikan and by

Thomson.
Solution

You can obtain the solution by substituting the value obtained by Millikan for the relation:
charge/mass = 1.76 x 108 (C g-1). Thus,
me = e/(1.76 x 108 C g-1) = 1.6 x 10-19 C/(1.76 x 108C g-1) = 9.1 x 10-28 g

The electric charge possessed by an electron (the elementary electric charge) is one of the
universal constants of nature and of great importance.

Sample Exercise 2.2 The ratio of the mass of an electron and that of a hydrogen atom.
Calculate the ratio of the mass of an electron and that of a hydrogen atom.
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Solution
The mass mH of a hydrogen atom is: mH = 1g/6 x 1023 = 1.67 x 10-24g.  Hence,

me : mH = 9.1 x 10-28g : 1.67 x10-24g = 1 : 1.83 x 103

It is remarkable that the mass of the electron is extremely small. Even the lightest atom,
hydrogen, is ca. 2000 times as heavy as an electron.

2.2 Atomic model

(a) The size of an atom
As mentioned in the previous section, the supposed indivisibility of the atom became gradually

suspect. At the same time, concern as to the structure of an atom gradually became intense. If one
considers the structure of an atom, its size should also be considered. It was already known that an
approximation for the volume of an atom could be estimated by dividing the volume of 1 mol of
solid by Avogadro’s constant.

Sample Exercise 2.3 The volume of one molecule of water
Assuming that the water molecule is a cube, calculate the length of an edge of this cube. Using

the value obtained, estimate the approximate size of an atom in terms of powers of ten.
Solution

The volume of 1 mole of water is approximately 18 cm3. Thus, the volume of 1 molecule of
water v is: v = 18 cm3/6 x 1023 = 3 x 10-23 cm3 = 30 x 10-24 cm. The length of an edge is 303  x 10-８

cm = 3.1 x 10-8 cm. This indicates that the size of an atom is in the order of 10-8 cm.

Thomson assumed that an atom with such a dimension is a positively charged, uniform sphere
and that negatively charged tiny electrons are scattered within the sphere. In this context, Thomson’s
model is called “the raisin bread model”; the raisins being the electrons and the atom the bread.

(b) Discovery of the atomic nucleus
After having made remarkable achievements in the study of radioactivity, the British physicist

Ernest Rutherford (1871-1937) became interested in the structure of atoms from which radioactivity
radiated. He bombarded a thin metallic foil (thickness of 104 atoms) with parallel streams of α
particles (later it was found that the α particle is the atomic nucleus of He). He planned to determine
the angles of scattered particles by counting the number of scintillations on a ZnS screen (Fig. 2.2).
The results were extremely interesting. Most of the particles passed directly through the foil. Some
particles rebounded. To explain this unexpected phenomenon, Rutherford proposed the idea of a
nucleus.

Fig. 2.2 Scattering experiment of α particles by Rutherford

It was very strange to find that some particles rebounded, and sometimes some even directly
backward. He conceived that a particle must exist in the atom that has a mass large enough to repel
an α particle possessing the mass of a helium atom, and which has an extremely small radius.



Ch 2 The structure of atoms

4(16)

According to his idea, the positive charge of an atom is concentrated in a small central part (with a
radius calculated to be ca. 10-12 cm) while the negative charge could be dispersed through the whole
atom. The small particle at the center of the atom he named nucleus. All previous models of atoms
as uniform spheres were thus denied.

However, the atomic model of Rutherford which consisted of a small nucleus with electrons
dispersed around it could not explain all known phenomena. If the electrons did not move, they
would join the nucleus by electrostatic attraction (Coulomb force). That was impossible because an
atom is a stable entity. If the electrons circle the nucleus like planets under the influence of gravity,
the electrons will undergo acceleration and lose energy through electromagnetic radiation. As a
result, their orbits will diminish so that the electrons eventually fall into the nucleus. Meanwhile, the
atom should emit a continuous spectrum. But again, the fact is that atoms are stable, and it was
already known that atoms emit a group of line spectra (atomic spectrum; cf Ch. 2.3(a) ) rather than a
continuous spectrum. It was clear that a fundamental change in thought was necessary to explain all
these experimental facts.

2.3 Foundation of classical quantum theory

(a) Atomic spectrum
If a metal or one of its compounds is heated in the flame of a burner, a color characteristic of

the metal appears. This is the well-known flame reaction. If the colored light is separated by means
of a prism, a few strong line spectra are observed, and the wavelength of each line is characteristic
of the metal involved. For instance, the yellow flame reaction of Na corresponds to two yellow lines
of its spectrum in the visible region, and the wavelengths of these two lines are 5.890 x 10-7 m and
5.896 x 10-7 m, respectively.

If a gas is sealed in a high vacuum tube, and a high voltage is applied, the gas discharges and
emits light. Separation of this light by means of a prism will give a series of discontinuous line
spectra. Since the wavelengths of this light are characteristic of the atom, the spectrum is called its
atomic spectrum.

The Swiss physicist Johann Jakob Balmer (1825-1898) separated the light emitted during
discharge from low-pressure hydrogen. He realized that the wavelength λ of a series of spectral lines
could accurately be expressed by a simple equation (1885). The Swedish physicist Johannes Robert
Rydberg (1854-1919) found that the wavenumbera) σ of a spectral line could be expressed by an
equation as indicated below (1889).

σ = 1/ λ = R{ (1/ni
2 ) -(1/nj

2 ) }cm-1 (2.1)

where ni and nj are positive integer (ni < nj) and R is a constant characteristic of the given gas. For
hydrogen it is 1.09678 x 107 m-1.

Generally the wavenumbers of the spectral lines of hydrogen atom can be expressed by the
difference of two terms, R/n2. The spectra of atoms other than hydrogen are much more complicated,
but their wavenumbers are also expressed by the difference of two terms.

(c) The Bohr theory
At the end of the 19th century, physicists had difficulty in understanding the relation between

the wavelengh of radiation from a heated solid and its relative intensity. There was some
disagreement between the prediction based on the theory of electromagnetism and the experimental
results.  The German physicist Max Karl Ludwig Planck (1858-1947) attempted to solve the
problem, which had annoyed physicists of the day, by introducing a novel hypothesis which was
later called the quantum hypothesis (1900).

According to his theory, a physical system cannot have arbitrary quantities of energy but is

                                                  
a) The number of waves contained in a unit length (e.g., per 1 cm)
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allowed only to have discontinuous quantities. By thermal radiation, that is, the radiation of energy
as electromagnetic waves from a substance, an electromagnetic wave with the frequency ν from the
surface of solid is generated from an oscillator that oscillates at the surface of the solid with that
frequency. According to Planck’s hypothesis, the energy of this oscillator can only have
discontinuous values as depicted by the following equation.

ε=nhν(n = 1, 2, 3,....) (2.2)

where n is a positive integer and h is a constant, 6.626 x 10-34 J s, which is called Planck’s constant.
The novel idea that energy is a discontinuous quantity was not easily accepted by the scientists

of the day. Planck himself regarded what he proposed as a mere hypothesis only necessary for
solving the problem of radiation from a solid. He had no intention to expand his hypothesis to a
general principle.

The phenomenon of emission of electrons from the surface of a photo-irradiated metal is called
the photoelectric effect. For a given metal, emission will take place only when the frequency of the
irradiated light is above a certain value characteristic of that metal. The reason for this was not
known at that time. Einstein was able to explain this phenomenon by applying the quantum
hypothesis to the photoelectric effect (1905). Around that time, scientists began to believe that the
quantum hypothesis was a general principle governing the microscopic world.

The Danish physicist Niels Hendrik David Bohr (1885-1962) attempted to combine Planck’s
quantum hypothesis with classical physics to explain the discontinuity of atomic spectra. Bohr made
several assumptions as given below and in Fig. 2.3.

The Bohr theory

(i) Electrons in atoms are allowed to be in certain stationary states. Each stationary state is
associated with a definite energy.

(ii) No energy emissions occur while an electron is in a stationary state. When it moves from a
high-energy stationary state to a low-energy stationary state (a transition), an emission of
energy takes place. The amount of energy, hν, is equal to the energy difference between the two
stationary states.

(iii) In any stationary state, an electron moves in a circular orbit around the nucleus.
(iv) An electron is allowed to move with an angular momentum that is an integral multiple of h/2π,

i.e.,
mvr = n(h/2π), n = 1, 2, 3,... (2.3)

The energy of an electron belonging to a hydrogen atom can be calculated using these
hypotheses. In classical mechanics, the electrostatic force exerted on an electron and the centrifugal
force exerted on it are balanced. Hence,

e2/4πε0r
2 = mv2/r (2.4)

in Eqs. 2.3 and 2.4, e, m and v are the electric charge, mass and velocity of the electron, respectively
(the subscript e is omitted for simplicity), r is the distance between the electron and the nucleus, and
ε0 is the dielectric constant of a vacuum, 8.8542 x 10-2 C2 N-1 m2.

Sample Exercise 2.4 The radius of electron orbit in hydrogen
Derive an equation to determine the radius of orbit r for the electron in a hydrogen atom from

Eqs. 2.3 and 2.4. Consider the meaning of the equation you derived.
Solution

mvr = nh/2π may be changed to v = nh/2πmr. By substituting this into Eq. 2.4, you can obtain
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the equation below.
e2/4πε0r

2 = mn2h2/4π2m2r3

∴ r = n2ε0h
2/(2π)2me2, n = 1, 2, 3,... (2.5)

Eq. 2.5 shows the restriction that only discontinuous values (quantization) are allowed for r-
values. Here the value n is called the quantum number.

The radius r can be expressed as shown below.

r = n2aB,  n = 1, 2, 3,... (2.6)

Fig. 2.3 The Bohr model.
Electrons are rotating in a circular orbit around the nucleus.

The values of the radius are discontinuous, and can be predicted by the Bohr theory

In this equation, aB is the minimum radius when n is 1. This value, 5.2918 x 10-11 m, is called the
Bohr radius.

The energy that the electron in a hydrogen atom possesses is the sum of its kinetic energy and
potential energy. Thus,

E  = mv2/2 - e2/4πε0r (2.7)

Sample Exercise 2.5 Energy of the electron in a hydrogen atom.
Using Eqs. 2.3 and 2.4, derive an equation which does not contain v to express the energy of

the electron in a hydrogen atom.
Solution

Eq. 2.4 can be converted into mv2 = e2/4πε0r. By substituting this equation into Eq. 2.7, you can
obtain the following equation after appropriate rearranging.

E  =  -me4/8ε0
2n2h2、 n = 1 ,2 ,3... (2.8)

Surely the energy of an electron can have only discontinuous values, each determined by the n
value.

The reason why the E value is negative is as follows. The energy of the electron in an atom is
lower than that of an electron that is not bound to a nucleus. Such electrons are called free electrons.
The most stable stationary state of an electron corresponds to the state with n = 1. As n increases, the
energy is decreases in absolute value and approaches zero.

(c) Atomic spectra of hydrogen
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According to the Bohr theory, the energy of electromagnetic radiation emitted from the atom
corresponds to the energy difference between two stationary states i and j. Thus,

ΔE = hν = │Ej - Ej│= (2π2me4/ε0
2h2 )［(1/ni

2 ) -(1/nj
2 )］： nj > ni  (2.9)

The wavenumber of electromagnetic radiation is given below:

∴ν = me4/8ε0
2n2h3)［(1/ni

2 ) -(1/nj
2 )］    (2.10)

The constant term calculated for the case of nj = 2 and ni = 1 is found to be identical with the
value previously obtained by Rydberg for the hydrogen atom (cf. Eq. 2.1). The value theoretically
obtained by Bohr (1.0973 x 10-7 m-1) is called the Rydberg constant R∞. A series of frequency
values calculated by putting nj = 1, 2, 3, … corresponds to the frequency of electromagnetic
radiation emitted by an electron which returns from an excited state to three stationary states, n = 1,
n =2 and n = 3, respectively. These values obtained by calculation were values already
experimentally determined values from the atomic spectra of hydrogen. The three series were named
the Lyman series, the Balmer series and the Paschen series, respectively. This indicates that the
Bohr theory can perfectly predict the atomic spectra of hydrogen. The spectra are summarized in Fig.
2.4.

Figure 2.4 The atomic spectra of hydrogen.
The Bohr theory can explain the origin of all transitions.

(d) Moseley’s law
The English physicist Henry Gwyn Jeffreys Moseley (1887-1915) found, by bombarding high-

speed electrons on a metallic anode, that the frequencies of the emitted X-ray spectra were
characteristic of the material of the anode. The spectra were called characteristic X-rays. He
interpreted the results with the aid of the Bohr theory, and found that the wavelengths λ of the X-
rays were related to the electric charge Z of the nucleus. According to him, there was the following
relation between the two values (Moseley’s law; 1912).
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1/λ = c(Z - s)2     (2.11)

where c and s are constants applicable to all elements, and Z is an integer.
When elements are arranged in line according to their position in the Periodic Table (cf. Ch. 5),

the Z value of each element increases one by one. Moseley correctly interpreted that the Z values
corresponded to the charge possessed by the nuclei. Z is none other than the atomic number.

Sample Exercise 2.6 Estimation of the atomic number (Moseley’s law)
It was found that the characteristic X-ray of an unknown element was 0.14299 x 10-9 m. The

wavelength of the same series of the characteristic X-ray of a known element Ir (Z = 77) is 0.13485
x 10-9 m. Assuming s = 7.4, estimate the atomic number of the unknown element.
Solution

First, estimate √c from Eq. (2.1).

1
0.13485x10−9 (m)

= c(77 − 7.4) = 69.6c√ √
∴ √c = 1237.27

Then,

1
0.14299x10−9 (m)

= 1222(z − 7.4)        ∴ z = 75

Various elements were put in order by Moseley’s law according to their atomic numbers.
Thanks to Moseley’s law, an old problem (how many elements are there in the world?) could be
solved. This is another example of the outcome of the Bohr theory.

(e) Limitation of the Bohr theory
The success of the Bohr theory was magnificent. The Bohr theory vividly envisaged the

structure of a hydrogen atom, with an electron rotating around the central nucleus in a circular orbit.
It soon became clear that there was a limitation in the theory. After various improvements, the Bohr
theory could manage to explain the atomic spectra of hydrogen-like atoms with one electron such as
helium ion He+. However, the atomic spectra of poly-electronic atoms could not be explained. In
addition, no persuasive explanation for the chemical bond was obtained.

In other words, the Bohr theory was one step toward a theory of atomic structure that could be
applicable to all atoms and chemical bonds. The significance of his theory should not be
underestimated since it clearly demonstrated the necessity of quantum theory to understand atomic
structure, and more generally, the structure of matter.

2.4 The birth of quantum mechanics

(a) The wave nature of particles
In the early half of the 20th century, it was noticed that electromagnetic waves, previously

treated only as waves, seemed to behave sometimes as particles (photons). The French physicist
Louis Victor De Broglie (1892-1987) assumed that the contrary might be true, in other words, that
matter also can behave as a wave. Starting from Einstein’s equation, E = cp where p is the
momentum of a photon, c the velocity of light and E is the energy, he obtained the following
relation:

E = hν
ν = c/λ； hc/ λ = E
∴  h/ λ = p    (2.12)
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De Broglie conceived that each particle with a momentum p = mv is accompanied by a wave
(material wave) with the wavelengh λ as defined by equation (2.12) (1924). Table 2.2 gives some
examples of the wavelength of material waves calculated by equation (2.12). As the size of the
particle increases, the wavelength becomes shorter. Hence with macroscopic particles, it is
impossible to observe diffraction and other phenomena associated with waves. For microscopic
particles like an electron, the wavelength of the material wave is observable.  In fact, the diffraction
of electrons was observed (1927) and proved the theory of De Broglie.

Table 2.2 The wavelengths of material waves.

particle mass (g) velocity (cm s1) wavelength (nm)
electron (300K) 9.1x10-28 1.2x107 6.1
electron at 1 V 9.1x10-28 5.9x107 0.12
electron at 100 V 9.1x10-28 5.9x108 0.12
He atom at 300K 6.6x10-24 1.4x105  0.071
Xe atom at 300K 2.2x10-22 2.4x104  0.012

Sample Exercise 2.7 Wavelength of a material waves.
A 2 g bullet is moving at the velocity of 3 x 102 m s-1. Calculate the wavelength of the material

wave associated with this bullet.
Solution

Using equation (2.12) and 1 J = 1 m2 kg s-2,
λ = h/ mv = 6.626 x 10-24 (J s)/ 2.0 x 10-3(kg) x 3x102(m s-1)

   = 1.10 x 10-30 (m2 kg s-1)/ (kg m s-1) = 1.10 x 10-30 m

Notice that the wavelength of the material wave associated with the moving bullet is much
shorter than that of an X-ray or γ ray and hence unobservable.

(b) The uncertainty principle
From what we learned about the material wave, we can notice that care must be taken when a

theory of the macroscopic world is applied to the microscopic world. The German physicist Werner
Karl Heisenberg (1901-1976) thought that it was impossible to determine accurately the position and
momentum of a minute particle such as an electron simultaneously. In order to observe the particle,
one has to irradiate the particle with light. The collision between the particle and the photon will
alter the position and momentum of the particle.

Heisenberg explained that the product of the uncertainty of position ∆x and of the momentum
∆p would be of the order of Planck’s constant as shown below.

∆x∆p = h    (2.13)

This relation is called Heisenberg’s uncertainty principle.

Sample Exercise 2.8 Uncertainty of the position of an electron.
Suppose you want to determine the position of an electron to a precision of about 5 x 10-12 m.

Estimate the uncertainty of velocity under this condition.
Solution

The uncertainty of momentum is estimated by Eq. (2.13).
∆p≒h/∆x = 6.626 x 10-34 (J s)/5 x 10-12 (m) = 1.33 x 10-22 (J s m-1)

Since the mass of an electron is 9.1065 x 10-31 kg, the uncertainty of the velocity ∆v can be
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estimated as follows.a)

∆v≒1.33 x 10-22(J s m-1) / 9.10938 x 10-31 (kg) = 1.46x108 (m s-1)

The estimated uncertainty of velocity amounts to nearly half of the velocity of light (2.998 x
108 m s-1) indicating that it is clearly impossible to determine precisely the position of an electron.
Thus, imaging a distinct circular orbit for an electron is not possible.

(c) Schrödinger’s equation
The Austrian physicist Erwin Schrödinger (1887-1961) proposed an idea that the De Broglie

equation could be applied not only to the free motion of particles, but also to the restricted motion of
particles such as electrons in an atom. By extending this idea, he formulated the system of wave
mechanics. At the same time, Heisenberg developed a system of matrix mechanics. Later these two
were unified into quantum mechanics.

In the realm of quantum mechanics, the state of a system is described by a wave function.
Schrödinger based his theory on the idea that the total energy of a system, Eb) could be estimated by
solving an equation. Since this equation has some similarity with the equation expressing a wave in
classical physics, it was called Schrödinger’s wave equation.

The wave equation of a particle (e.g., an electron) moving in one direction (e.g., x direction) is
given below:

(-h2/8π2m)(d2Ψ/dx2) + VΨ = EΨ    (2.14)

where m is the mass of an electron, V is the potential energy of the system as a function of
coordinates, and Ψis the wave function.

One-dimensional square-well potential
The simplest example of Schrödinger’s equation is the one for an electron in a one-dimensional

square-well potential. Suppose the potential energy V of an electron confined in a box (the length is
a) is 0 in the box (0 < x < a) and ∞ outside the box. The Schrödinger equation within the box is:

d2Ψ/dx2 = (-8π2mE/h2)Ψ    (2.15)

Ψ= 0 at x = 0 and x = a    (2.16)

The following equation is obtained by solving the above equations.

Ψ(x) = (√2/a)sin(nπx/a)    (2.17)

Note that n arouse automatically.
The wave functionΨ itself does not have any physical meaning. The square of the absolute

value ofΨ, Ψ2, is, however, a mathematical indication of the possibility to find the electron in
question at a given position, and hence very important because it is related to the electron density. If
the possibility of existence of the electron existing at a certain position is integrated all over the
active space, the result should be unity: i.e.,

∫Ψ2dx = 1

                                                  
a) J(joule) is defined as kg m2 s-2.
b) The solution of Schrödinger equation (energy) is called the Eigenvalue (Eigen = a German word
meaning “own”)
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The energy (Eigenvalue) is

E = n2h2/8ma2; n = 1, 2, 3...      (2.18)

It is clear that the energy value of the particle is discontinuous.

Hydrogen-like atom
It is possible to extend the method used in the one-dimensional square-well potential and to

handle a hydrogen atom or hydrogen-like atoms in general. For this purpose, the one-dimensional
equation (2.14) should be expanded to three-dimensions as shown below.

(-h2/8π2m)Ψ［(∂2/∂x2) + (∂2/∂y2) +(∂2/∂z2)］+V(x, y, z)Ψ = EΨ   (2.19)

If we define ∇2 as shown below;

(∂2/∂x2) + (∂2/∂y2) +(∂2/∂z2) = ∇2   (2.20)

the three-dimensional Schrödinger’s equation will become as below:

(-h2/8π2m)∇2Ψ +VΨ = EΨ   (2.21)

or

∇2Ψ +(8π 2m/h2)(E -V)Ψ = 0   (2.22)

The potential energy of a hydrogen-like atom is given below where Z is the electric charge.

V = -Ze2/4πε0r   (2.23)

If you substitute Eq. (2.23) into Eq. (2.22), you will obtain the following equation.

∇2Ψ+(8π2m/h2)［E + (Ze2/4πε 0r)］Ψ = 0    (2.24)

To sum up, the solution of this equation for the energy of hydrogen-like atoms agrees with that
obtained from the Bohr theory.

Quantum number
Since an electron moves in three-dimensions, three kinds of quantum numbers (Ch. 2.3(b)),

principal quantum number, azimuthal quantum number and magnetic quantum number, are
required to express one wave function. In Table 2.3, the notation and allowed numerical values for
each quantum number are summarized. The 4th quantum number, spin magnetic quantum number
is associated with the quantization of angular momentum of an electron caused by its spinning. The
axial component of angular momentum is allowed to have only two values, +1/2(h/2π) and -
1/2(h/2π). The spin magnetic quantum number is related to these values (ms = +1/2 or -1/2). Only
this quantum number is not an integer.

Table 2.3 Quantum numbers

Name (quantum number) symbol allowed values
principal n 1, 2, 3,...
azimuthal l 0, 1, 2, 3, ...n - 1



Ch 2 The structure of atoms

12(16)

magnetic m(ml) 0, ±1, ±2,...±l
spin magnetic ms +1/2, -1/2

Instead, symbols as shown in Table 2.4 are used for these. The energy of a hydrogen or
hydrogen-like atom is determined by the principal quantum number alone, and the equation
expressing the energy is identical with that derived from the Bohr theory.

Table 2.4 Symbols for azimuthal quantum number

value of l 0 1 2 3 4
symbol s p d f g

(d) Orbital
A wave function for an electron is called an orbital. If the principal quantum number is n = 1,

there is only one value for l, i.e., 0. In this case there is only one orbital, and the set of quantum
numbers for this orbital is (n = 1, l = 0). When n = 2, two values, 0 and 1, are allowed for l. In this
case there are four orbitals which are defined by the following set of quantum numbers, (n = 2, l = 0),
(n = 2, l = 1, m = -1), (n = 2, l = 1, m = 0), (n = 2, l = 1, m = +1).

Sample Exercise 2.9 Possible numbers of orbitals.
How many orbitals are possible when n = 3. Show the set of quantum numbers as was done

above.
Solution

The same counting is possible for the set (n = 3, l = 0) and (n = 3, l = 1). In addition, there are
five orbitals associated with (n =3, l =2). Thus, (n = 3, l = 0), (n = 3, l = 1, m = -1), (n =3, l = 1, m =
0), (n =3, l = 1, m = +1)、 (n =3, l =2, m = -2), (n =3, l = 2, m = -1), (n = 3, l = 2, m = 0), (n = 3, l = 2,
m =+1), (n = 3, l = 2, m = +2). Altogether there are 9 orbitals.

An abbreviation to describe orbitals by principal quantum numbers and symbols shown in
Table 2.4 is widely used. For instance the orbital with a set of quantum numbers (n = 1, l = 0) is
designated as 1s, and orbitals with a set of quantum number (n = 2, l = 1) to 2p regardless of the
value of m.

It is difficult to expressΨvisually since it is a mathematical formula. However, Ψ2 represents
the probability of finding an electron within a definite distance around the nucleus. If the probability
thus obtained is plotted, you can obtain Fig. 2.5. The spherical picture is called an electron cloud.

Figure 2.5 Electron cloud.
The probability of finding an electron will become smaller as the distance

from the nucleus is larger. (a) 1s orbital of hydrogen. (b) 2s orbital of hydrogen.

If we give a boundary to the electron cloud so that the probability of finding an electron within
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the boundary is, say, 95% confidence level, we can approximately visualize orbitals as shown in
Figure 2.6.

Figure 2.6 Visualization of orbitals.
The boundary of orbitals of hydrogen and hydrogen-like atoms

can be drawn at any percentage of confidence you like.

Electron configuration of atoms
When an atom contains more than two electrons, interactions among the electrons should be

taken into consideration, and it would be very difficult to solve the wave equation of such a complex
system. If it is assumed that each electron in a poly-electronic atom will move in an averaged,
spherically symmetric electric field, the orbital for each electron can be defined by three quantum
numbers n, l and m plus spin magnetic quantum number ms, as is the case with hydrogen-like atoms.
The energy of hydrogen-like atoms is determined solely by the principal quantum number n, but that
of poly-electronic atoms is mainly determined by n and l. If the atoms have the same n value, the
larger that l is, the higher the energy.

Pauli’s exclusion principle
According to the Pauli’s exclusion principle, only one electron in the atom is allowed to

occupy a state defined by a set of four quantum numbers, or, at most two electrons can occupy an
orbital defined by three quantum numbers n, l and m. The two electrons should have different ms i.e.,
these are in spin antiparallel states, and such a pair of electrons is named an electron pair.

A group of electrons with the same n value is called a shell or an electron shell. The notation
used in Table 2.5 will be used for electron shells.
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Table 2.5 Symbols of electron shells.

n 1 2 3 4 5 6 7
symbol K L M N O P Q

Table 2.6 summarizes the maximum number of electrons in each shell, from shell K to shell N.
When an atom is in the most stable state, the ground state, its electrons will occupy an orbital with
lower energy, following the Pauli principle.

Table 2.6 The maximum number of electrons occupying each shell.

n shell l symbol max. number of electron
1 K 0 1s 2  (2 = 2x12)
2 L 0 2s 2  (8 = 2x22)

1 2p 6
3 M 0 3s 2

1 3p 6  (18 = 2x32)
2 3d 10

4 N 0 4s 2
1 4p 6  (32 = 2x42)
2 4d 10
3 4f 14

In Fig. 2.7, the energy level of each orbital is shown. With higher energy orbitals, the energy
difference between orbitals is small, and sometimes, the order is reversed. The electron
configuration of each atom in its ground state is shown in Table 5.4. The electron configuration of
the outermost shell is clearly changed as the atomic number of the elements is changed. This is the
theoretical basis for the Periodic Law, which will be discussed in detail in Ch. 5.

It must be added that, with the aid of the symbols given in Table 2.6, the electron configuration
of an atom can be expressed. For instance, the hydrogen atom in the ground state has one electron in
shell K and its electron configuration is (1s1). A carbon atom has 2 electrons in the K shell and 4
electrons in the L shell. Its electron configuration is (1s22s22p2).

Figure 2.7 Energy level of electrons
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The figures in the vertical columns correspond to the electron shells starting from K.
Two electrons are the maximum that can be accommodated in each box.

Exercise
2.1 The Bohr theory

Calculate the energy absorbed by an electron of a hydrogen atom when it is excited from the (n
= 1) state to the (n = 3) state. Determine the wavelength of the relevant electromagnetic wave.
Bohr’s theory assumes the energy of an electron in the hydrogen atom is -2.718 x 10-18/n2 (J)
2.1 Answer
The energy can be calculated with the aid of equation (2.9).

ΛE x= − −





−2 178 10
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1
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18
2 2

. = +1.94x10 (J)-18

The relation between frequency and wavelength of electromagnetic wave isν= c/λ.

Hence, ΔE = hc/λ, the wavelength can be obtained as below.
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2.2 The Bohr theory
What amount of energy is required in order to remove an electron of a hydrogen atom which is an
excited (n – 2) state?
2.2  Answer

∆E E E E E x J= − = = = ( )∞
−

2 2 1
191

4
5 45 10.

2.3 De Broglie’s equation
Calculate the wavelength of the material wave associated with an electron (m; 9.11 x 10-31 kg)

moving with a velocity of 5.31x 106 m s-1.
2.3 Answer

2.4 One-dimensional square-well potential
An electron is confined in a one-dimensional square-well potential with the width of 0.3 nm.

Determine its energy level. Calculate the frequency and wavelength of the electromagnetic wave
when the electron moves from the (n = 2) state to the (n = 1) state.
2.4 Answer
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The frequency and the wavelength of electron is:
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2.5 Uncertainty principle
The position of an electron in an atom is to be determined to the precision of 0.02 nm. Estimate

the uncertainty involved in the velocity of the electron.
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2.5 Answer
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It will be interesting to compare the value with the velocity of light (3.0 x 108 m s-1).

2.6 Electron configuration of some atoms
Generally the energy of orbitals in poly-electronic atoms increases in the following order:

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p
Give the electron configuration of 26Fe, 40Zr, 52Te in the ground state. If you cannot now solve

this problem, try again after you study Ch. 5.
2.6 Answer

26Fe; (1s)2(2s)2(2p)6(3s)2(3p)6(3d)6(4s)2

40Zr; (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)2(5s)2

52Te; (1s)2(2s)2(2p)6(3s)2(3p)6(3d)10(4s)2(4p)6(4d)10(5s)2(5p)4


