1．2 同位体と原子量
1． 2.1 原子の構造
Thomson：電子
Rutherford：原子核
1．2．2 原子の種類：同位体
質量の基準： 12 C ，原子質量単位
1．2．3 放射性同位体
放射線（ α 線，β 線，γ 線）を発して他の原子へ：放射性壊変（崩壊）
半減期
崩壊系列
1．2．4質量欠損（図1．5）
核子：原子を作ると安定になる（エネルギーを放出＝質量が減る）

$$
\mathrm{E}=\mathrm{mc}^{2}
$$

核分裂，核融合
1.3 水素原子の模型（略）」

1．4 波動方程式と電子状態

1．4． 1 波動方程式：量子力学

不確定性原理 \rightarrow 波と考える方が解きやすい \rightarrow 波動方程式
解：波動関数 ψ ：粒子の振る舞い
符号：波の位相
$\psi^{2}:$ 波の強度＝粒子の存在確率
1．4．2 水素原子の波動関数（表1．7）
動径分布（図 1.9 ）
角度分布，空間分布（図．1．10）
1．4． 3 量子数と電子の状態
量子数（「化学基礎論」）
主量子数 n：軌道の広がり（原子核からの距離）とエネルギー
方位量子数।：0～n－1：0：方向なし 1：一次元 2：二次元 $3:$ 三次元，．．．
磁気量子数 m ：－｜～｜：方向
スピン量子数：$-1 / 2$ または $1 / 2$
多電子原子（量子化学）
軌道エネルギー（図 1．13）
同じn でも軌道エネルギー異なる

不対電子なし：反磁性 あり：常磁性

周期表との関係

s ブロック：1，2 族		
p	$13-18$	典型元素
d	$3-11$	遷移元素
$($	12	典型元素）
f	ランタノイド，アクチノイド	（内部遷移元素）

