3. 芳香族化合物

3.1. ポリケチド由来の化合物 (原料はacetyl CoA)

アントラキノン類(色素)

アリザリン
$$(アカネ)$$
 エモジン $(アロエ)$ エンドクロシン $(penicillium属)$

テトラサイクリン類 (抗生物質)

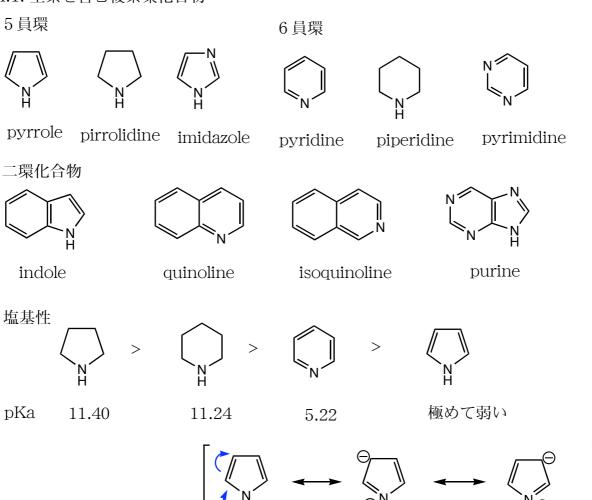
その他

3.2. シキミ酸由来の化合物 (C₆-C₃)

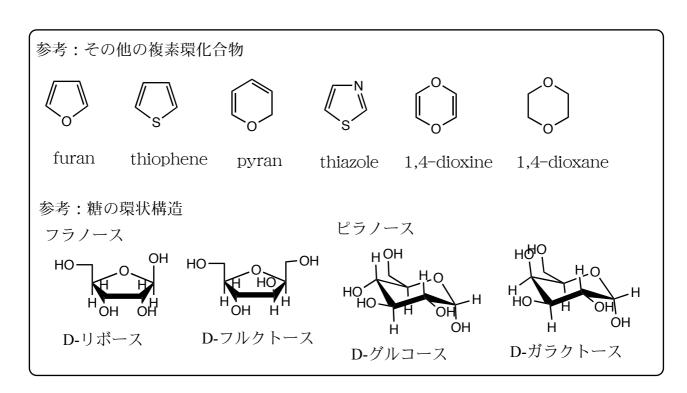
PEP: ホスホエノールピルビン酸

3.3. フラボノイド (C_6 - C_3 - C_6)

色素、抗酸化作用(ポリフェノール類)など


X=Y=OH:デルフィニジン

カテキン(樹木全般、 タンニンの母体)


ÓН

4. 含窒素化合物

4.1. 窒素を含む複素環化合物

塩基性の基になる非共有電子対が非局在化している

4.2. アルカロイド

4.2.1. 特徵

窒素を含む化合物

塩基性:示すものと示さないものがある

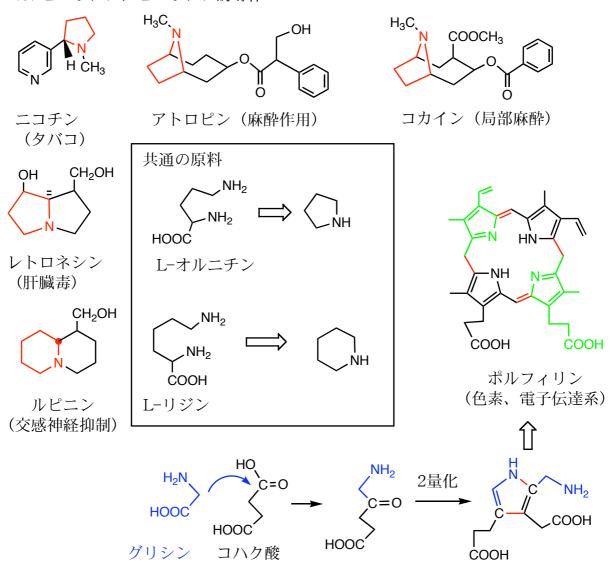
強い生理活性をもつ→毒物、薬物、ホルモンなど

4.2.2. 生合成経路による分類

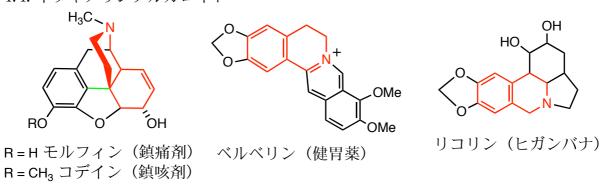
(1) 真性アルカロイド

アミノ酸を出発物質として生合成 複雑な構造→窒素を含む環構造による分類

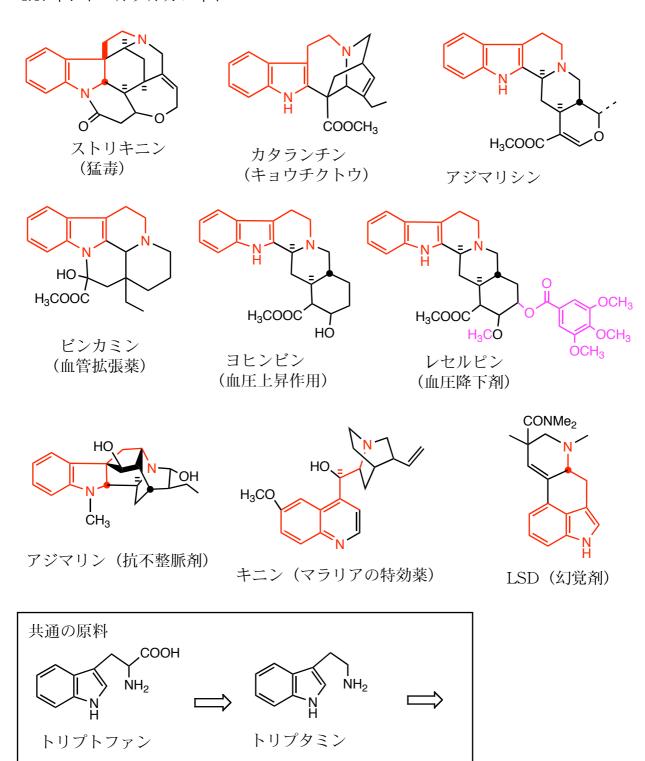
(2) 不完全アルカロイド


アミノ酸の単なる脱炭酸でできる簡単な骨格

OH
$$CH_3O$$
 NH_2 NH_2 NH_2 $COOH$ CH_3O OCH_3 OCH


(3) 擬アルカロイド

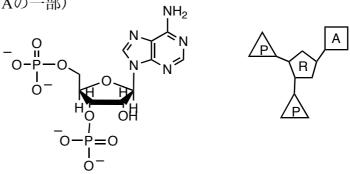
テルペノイド、ステロイド、ポリケチドなどにアンモニア窒素が結合 核酸などの含窒素化合物に由来


4.3. ピロリジン、ピペリジン誘導体

4.4. イソキノリンアルカロイド

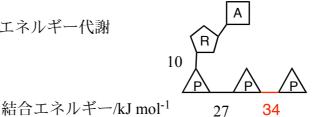
4.5. インドールアルカロイド

5.1. 補酵素


: 生体内で酵素(Enzyme)の触媒作用を助ける物質。 多くは反応と共に消費され、また再生される。 化学反応の「試薬」に相当する。 原料を体内で合成できない場合、その原料はビタミンになる。

5.1.1. 共通する構造 (原料)

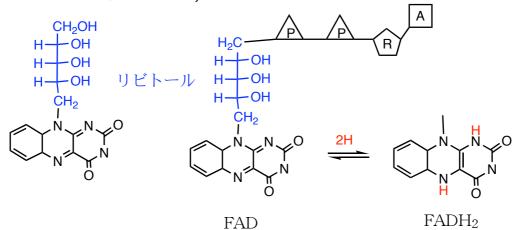
(1) 糖:特にD-リボース (ribose) CHO で使う記号 H OH OH HO OH HO OH CH₂OH OH OH OH OH OH CH₂OH


(2) 核酸塩基:特にアデニン (adenine) NH₂ NH₂ A

(4) よく見られる結合様式(RNAの一部)

5.1.2. アデノシン三リン酸 (ATP)

もっとも簡単な補酵素 高エネルギー結合をもつ→エネルギー代謝

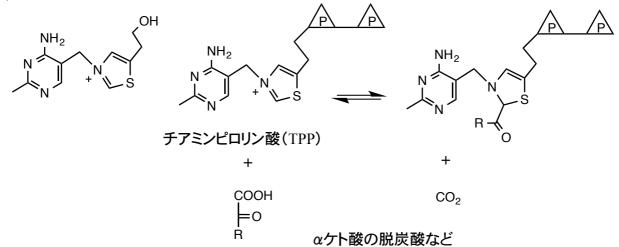

5.2. 補酵素の原料となるビタミン

(1) ニコチンアミド (ニコチン酸アミド)

$$\bigcup_{N}^{O} \ddot{C} - NH_2$$

NADP (酸化還元補酵素) の原料 アルコールの酸化 (アルデヒドの還元) 糖の酸化 (糖酸の還元) など

(2) リボフラビン (ビタミンB2)



アルデヒドの酸化(カルボン酸の還元)など

(3) ピリドキシン (ビタミンB6)

アミノ酸の合成(分解)など

(4) チアミン(ビタミンB1)

(5) パントテン酸

補酵素A(Coenzyme A, HSCoA)

アシル基の反応に関与

(例)酸アミドの合成

活性エステル結合

アシル化

$$H_3C-C-S'$$
 + H_2C COA COA $H_3C-C-CH_2$ COA COA