

Analysis of electrostatic force on non-uniformly charged particles

Boonchai Techaumnat Chulalongkorn University, Thailand

Tadasu Takuma Tokyo Denki University, Japan (Formerly)

Introduction

- Electrostatic adhesion of charged particles on a substrate
- Simple estimation of adhesion for particle radius *R*, charge *Q* at height *d*

$$F_a = \frac{Q^2}{4\pi\varepsilon_E\varepsilon_0(R+d)^2}$$

- Estimation is smaller than measured values.
- To explain discrepancy: proximity force, charge patch models
- This work tries to clarify the role of charge distributions on the adhesion

Configuration

- Dielectric particle on a conducting plane
- Air as the exterior medium ($\varepsilon_E = 1$)
- Particle dielectric constant ε_p varied from 1-5
- Charging models: consider the same total charge amount

Method

- Boundary element method (BEM) applied to calculate electric field
- The BEM is suitable for highly nonuniform field cases
- 720 2nd-order elements, 1441 Nodes used for contour

With charge density σ :

 $E_n^{ext} - \varepsilon_p E_n^{in} = \frac{\sigma}{c}$

 E_n^{ext}

• Boundary condition (of E) on the particle surfce

Without charge

$$E_n^{ext} - \varepsilon_p E_n^{in} = 0$$

• Force calculation

$$\mathbf{F}_{a} = \varepsilon_{E} \varepsilon_{0} \int_{S} \left(\mathbf{E} E_{n} - \frac{1}{2} E^{2} \mathbf{n} \right) \mathrm{d}S$$

- Consider uniform charging
- Peak electric field at the bottom pole
- Higher $\varepsilon_p \rightarrow$ Stronger field near the bottom pole
- On the exterior side

$$\frac{E_n^{ext}}{E_0} - \frac{\varepsilon_p E_n^{in}}{E_0} = 1$$

 E_n^{ext} positive (outward) for all θ

Effect of
$$\mathcal{E}_p$$

• Expression of \mathbf{F}_a of a charged particle on a grounded plane

$$F_a = \alpha \frac{Q^2}{4\pi\varepsilon_E \varepsilon_0 (2R)^2}$$

- *α* : force magnification factor
- D.A. Hays calculated α = 1.9 for ε_p = 4

 α values obtained from BEM calculation

\mathcal{E}_p	α
1	1.0
2	1.29
3	1.61
4	1.95

Field Distr.: Partially Charged

In the Interior

In the Exterior

Adhesive Force Variation

Top-Pole Distribution

Bottom-Pole Distribution

CHULA ∑NGINEERING

Foundation toward Innovation

Variation of \mathbf{F}_a with θ_q for bottom-pole charging

- For large θ_q or uniform, F_a increases with dielectric constant
- For small θ_q , F_a slightly decreases with dielectric constant

CHULA **ENGINEERING**

- Toner particles (5.5 μm *R*) for laser printers
- For uniform charging with $Q = 10 \ \mu\text{C/g}$, measured $F \cong 100 \ n\text{N*}$.
 - Simplest approximation gives 2.46 nN adhesion
 - Taking into account ε_p , 3.96 nN
 - Still one digit smaller than measured values
- Much stronger adhesion possible by nonuniform charging

	$ heta_q$ (°)	Adhesive Force, F_a (nN)		
Calculated results for 5-µm radius,		$\mathcal{E}_p = 1$	$\varepsilon_p = 3$	$\mathcal{E}_p = 5$
1000-kg/m ³ density particle and	180	2.46	3.96	5.66
10 μC/g total charge	90	5.31	6.92	8.83
• $Q = 5.2 \text{ fC}$	45	20.7	21.0	22.6
• $V_Q = 9.4 \text{ V}$	22.5	90.6	81.2	78.6

Conclusion

- We analyze electrostatic adhesion of a particle with partial charge distribution
- Numerical method is used as the tool to treat the discrete charge density
- Force becomes stronger when charges are at the bottom pole, but weaker when charges are at the top pole
- Effect of particle dielectric constant enhances adhesion in cases of uniform and slightly nonuniform
- Nonuniform charging can be the reason of discrepancy between analysis and measurement