

Particle charging in industrial process

Dr. Matti Murtomaa Laboratory of Industrial Physics Dept. of Physics and Astronomy University of Turku, Finland

STEP-1, The first international workshop on Static-Tribo-Electricity of Powder, Tokyo, 20.12.2014

OUTLINE

- Background
- What is special about industrial processes
- Examples
 - packing
 - powder transport
 - storage: surface amorphicity
- Control methods
- Conclusions

Background

- Laboratory of Industrial Physics
 - R&D
 - Measurement services
 - Problem solving
 - Co-operation with
 - pharmaceutics, chemistry, paper, printing, ...
- Finland
 - Long cold, relatively dry winter
 - Dry conditions inside facilities
 → promotes triboelectric charging

Industrial processes

- High production rates
 - Energetic contacts, high charging levels
- Large volumes
 - Charge build-up, high electric fields
- Synthetic materials
 - Low conductivity, slow charge decay
- Sensitive materials
 - Might require low humidity, antistatic additives inapplicable

Industrial processes

Large facilities

- Expensive and difficult air conditioning, uncontrolled (low) humidity
- Indoor and outdoor operations
 - Temperature and humidity variations, unpredictable charging
- Many different unit operations
 - Various contact materials, energies, operational parameters, unpredictable charging

Industrial processes

- Different batches in same production line
 - Surface contamination, residues, unpredictable charging
- Plant personnel & operators
 - No knowledge or training about static electricity
 - Tradition of "we have always done it this way"
- Charging is almost always unwanted phenomenon!

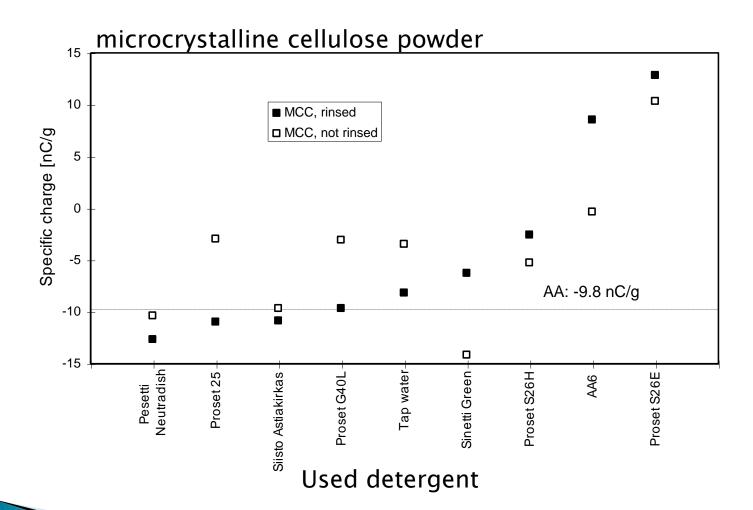
Example, packing

- Fine hygroscopic powder packed into plastic bags
 - Strong adhesion on plastic (opposite polarity)
 - Difficulties in sealing
 - High mass flow rate & Hydrogen
 → Ionizers, humidification

not actual unit

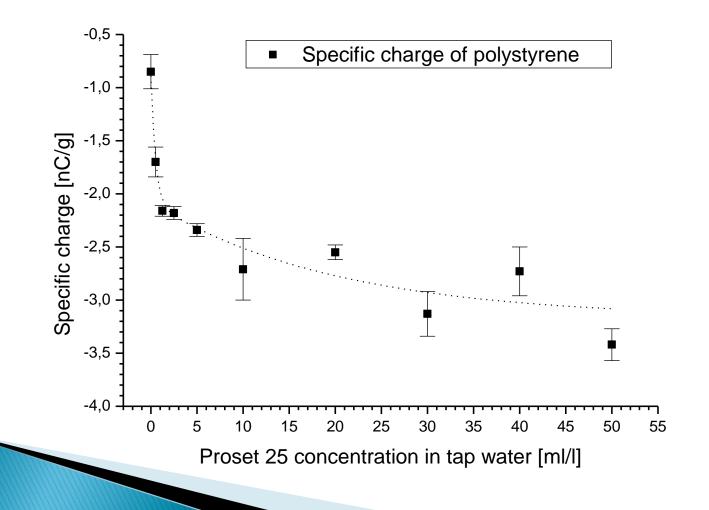
Example, packing

- Different options for plastic
 - choose the one with less charge
 - same polarity than powder
 - static dissipative
- Passive neutralisator

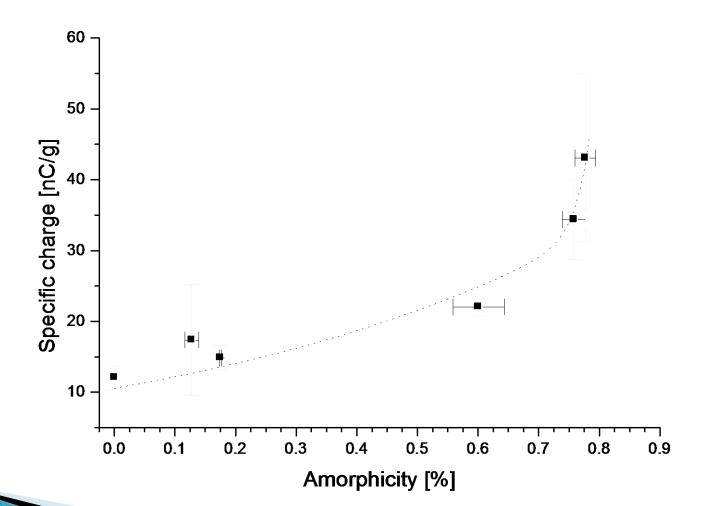

Example, powder transport

- Unexpected difficulties in handling pharmaceutical powders
 - Process flow chart unchanged
 - Identical raw material batches
 - Atmosphere controlled as usual
 - Similar cleaning procedure...
 but different detergent

Effect of washing on charging


- Powder samples (microcrystalline cellulose, polystyrene) charged by sliding in a steel pipe into a Faraday pail
- Washing procedure
 - tap water & brush
 - blow dried
 - polished mechanically
 - tap water & brush
 - rinsed with distilled water
 - rinsed with ethanol
 - blow dried
 - rinsed with detergent
 - (rinsed with distilled water)
 - blow dried

Effect of washing on charging

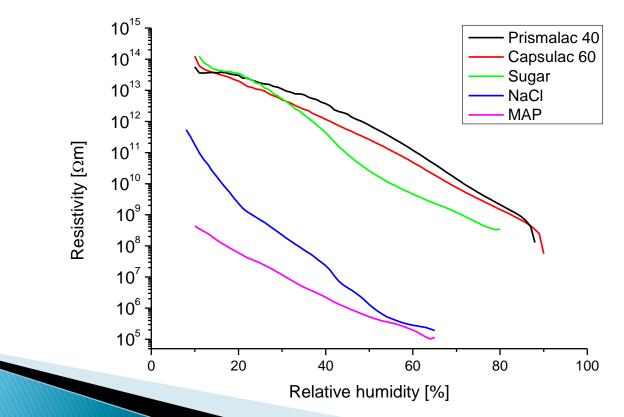

Murtomaa, M., et al., 2002: Effect of detergent on powder triboelectrification. Eur. J. Pharm. Sci. 17, 195–199

Effect of concentration of detergent on charging

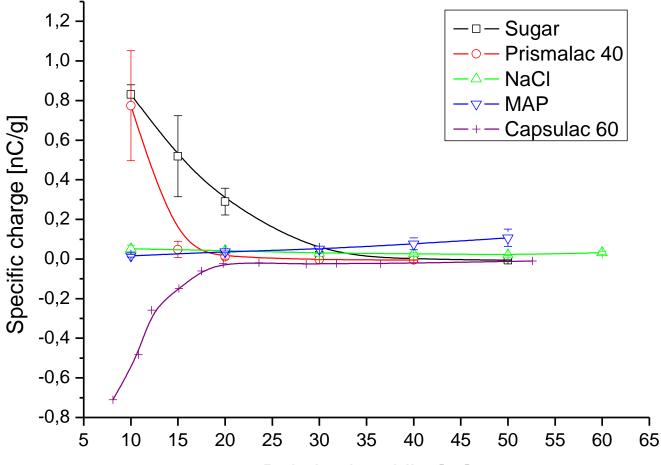
- Energetic contacts can give rise to surface amorphicity
 - pneumatic transport
 - milling ...
- Amorphous surface is usually unstable
- Effect on charging?

- Controlled surface amorphicity prepared by spray-drying lactose from water/ethanol mixture
- Samples charged in polypropylene pipe

Murtomaa, M., et al. 2002: Effect of amorphicity on the triboelectrification of lactose powder. J. Electrostat. 56, 103–110


- Amorphicity increased charging
- Charging tendency of surface amorphous material is likely to be time-dependent
- Recrystallization, humidity, storage...

Control methods


- 1. To prevent charging in the first place
 - reduce contact energy & area
 - selection of materials (triboelectric series)
 - coating, intentional adhesion
 - antistatic additives
- 2. Neutralization
 - ionizers
 - humidification
 - grounding

Humidification

- Very effective where applicable
- Does not prevent charging but increases conductivity and charge decay

Charging of various powders in a fluidized bed

Relative humidity [%]

Murtomaa, M., et al., One-step method for measuring the effect of humidity on powder resistivity, J. Electrostatics 71 (2013) Murtomaa, M., et al., One-step measurements of powder resistivity as a function of moisture, Proc. ESA Annual Meeting 2014

Conclusions

Industrial operations vs. laboratory studies

INDUSTRY	LABORATORY
large volumes	small samples
ambient atmosphere	controlled atmosphere
special conditions (<i>p, T</i>)	impossible to obtain in lab
contamination	clean surfaces
variable process	reproducibility
plant operators	scientists

Industrial operations are totally different game!

 extra caution is needed when laboratory results are applied in industry

Thank you for your attention!

matti.murtomaa@utu.fi