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Powders and particulate solids are handled in air, their surfaces become
triboelectrically charged. In pneumatic transport lines and fluidized beds,
particles become charged.

In order to analyze particle charging, the measurement of electrostatic
charge and the characterization of electrostatic properties are important.

1. Introduction
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Fig. 1-1.  Charge-to-mass ratio of particles passed through in a pipe made of different material.
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Fig. 1-2. Control the particle charge –theory and experiments –
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2.1 Characterization of particle tribocharging 
in gas-solids pipe flow
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Fig. 2-1. Experimental setup for determining particle charge after different pipe lengths. 
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Fig. 2-2. A new experimental setup to characterize particle tribocharging in gas-solids pipe flow. 
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Fig. 2-3. qm IN vs. qm OUT for borosilicate particles in 1-m natural glass pipe.
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Fig. 2-4. Predicting charging profile for borosilicate particles a)  in natural glass pipe b) in copper pipe.
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Fig. 2-5. qm IN vs. qm OUT for borosilicate particles in 1-m copper pipe.
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2.2 Two-stage system with vibrations and 
external electric fields
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Fig. 2-6. Schematic diagram of the setup.

Mizutani, M., M. Yasuda, and S. Matsusaka; Advanced characterization of particles triboelectrically charged 
by a two-stage system with vibrations and external electric fields, Advanced Powder Technology (in press)
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Fig. 2-7. Particle charge profiles (Manganese ferrite particles, stainless steel plate).
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Fig. 2-8. Relationship between transferred specific charge and initial specific charge as a function of 
external electric field (Manganese ferrite particles, stainless steel plate, L = 65 mm).
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Fig. 2-9. Relationship between transferred specific charge and initial specific charge as a 
function of travel distance of particles (Glass beads, stainless steel plate).
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Fig. 2-10. Particle charge profiles (Manganese ferrite particles, stainless steel plate).
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3. Adhesive strength distribution of charged particles 
on metal substrate in external electric field
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Fig. 3-1. Experimental setup for measuring particle–substrate adhesion.
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Fig. 3-2. Experimental setup for controlling the initial charge of particles and 
depositing the charged particles on a metal substrate.
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Fig. 3-3. Experimental result for toner A: (a) variation of air velocity in the channel; (b) particle entrainment 
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Fig. 3-4. Relationships between particle 
entrainment efficiency and air velocity as a 
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Fig. 3-5 Relationships between particle entrainment 
efficiency and air velocity as a function of the external 
electric field (Toner A).
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Fig. 3-6. Image force FI and Coulomb force FE in an external electric field Eex (q: particle charge, qi: 
initial charge, Δq0: charge transferred without external electric field, Δqex: charge transferred caused 
by external electric field, qi < 0, Δq0 < 0, Δqex < 0).
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